The
Pythagorean Theorem states that for a
right triangle with legs of length
a and
b and
hypotenuse of length
c,
a2 +
b2 =
c2 Look at this diagram,
a +
b on a side.
#######################################################################
# ### #
# # # #
# ___ ## # #
# | _ |__ # # # ### #
# | __|_ | ## # # # #
# |___/ _| # # # #### ## #
# |___| ## # ## # # #
# # # # # #### #
# ## # # # #
# # # # # #
# ## # ##### #
# # ___ # #
# ## | _ |__ # #
# # | __|_ | # #
# ## |___/ _| # #
# # |___| # #
# ## # #
# # # #
### # #
#######################################################################
# # ## #
# ### # ## ___ #
# # # ### | _ |__ #
# #### ## # ## | __|_ | #
# ## # # # ## |___/ _| #
# # # #### # ### |___| #
# # # # ## #
# # # # ___ ## #
# #### # # | _ |__ ### #
# # | __|_ | ## #
# # |___/ _| ## #
# # |___| ### #
# # ## #
# # ## #
#######################################################################
#######################################################################
# ## ## #
# # ## ___ #
# ___ ## ### | _ |__ #
# | _ |__ # ## | __|_ | #
# | __|_ | ## ## |___/ _| #
# |___/ _| # ### |___| #
# |___| ## ## #
# # ## #
# ## ### #
# # ## #
# ## ## #
# # ### #
# ## ### ## #
# # # ## #
# ## ##### ## ##
# # # # ###
# ## # #### # #
# # # ## #
### # # #
## ##### ## #
# ## # #
# ## ## #
# ### # #
# ## ## #
# ## # #
# ### ## #
# ## # ___ #
# ___ ## ## | _ |__ #
# | _ |__ ### # | __|_ | #
# | __|_ | ## ## |___/ _| #
# |___/ _| ## # |___| #
# |___| ### ## #
# ## # #
# ## ## #
#######################################################################
QED. Ph34r my l33t 930m37ry ski11z.
OK, so it isn't really a one-word proof; most of the proof is embedded in the diagrams. Observe that, by the binomial theorem, a^2 + b^2 + 2ab = (a + b)^2 (first diagram); manipulating the four triangles produces (a + b)^2 - 2ab = c^2.
Gorgonzola observes: "If a picture is worth a thousand words, this is a 2001 word proof."