(Mathematical Logic:)
A theory is consistent iff it is free of contradictions: For any proposition P, it's possible to prove at most one of P, ~P from the axioms of the theory.

One may prove that a theory is consistent iff it has a model:

--> :
If it's consistent, we need the axiom of choice to get a model. The proof is extremely technical, but in a sense trivial. We work in a universe which contains just those objects that the theory's language can mention. We arrange for all provable propositions (theorems) P to hold, and then Choose for any unprovable pair (P,~P) which holds, in a "consistent" manner.
<-- :
If it has a model, then for any proposition P either P holds in the model or ~P holds in the model. If P holds then ~P cannot be proven (or it would be true in the model, since the model satisfies the axioms), and if ~P holds then P cannot be proven. So a contradiction can never be proved.

This direction is free of the axiom of choice.

This is usually known (for first order logic) as Gödel's completeness theorem (NOT the same as his incompleteness theorem!)