Not to be overly
nit-picky, but
blaaf's write up is not entirely accurate. He provides the values of the
standard normal distribution, which is the normal distribution when the
mean is 0 and
standard deviation 1. This is a particularly useful normal distribution (ie. it is used to simplify calculations in statistical tests), but only one of an infinite set.
The equation for the normal curve is:
f(x) = e(-(x-μ)2/2σ2) / √(2πσ2)
Where μ is the mean of the distribution, σ is the standard deviation of the distribution and f(x) is the probability density function. As you can easily see, if the mean is 0 and standard deviation 1, the normal curve becomes:
f(z) = e-z2/2 / √2π