A fascinating fact about regular dodecahedra that should be in here somewhere: if you draw the
diagonals, making a
five-pointed star on each of the twelve
pentagonal faces, you have just drawn the
edges of five cubes.
The following POV-Ray script demonstrates this
fact (the cube is formed from the twelve red cylinders, in case you can't see it straight away:)
#include "colors.inc"
#include "shapes.inc"
camera {
location <0, 0, -20>
up <0, 1, 0>
right <4/3, 0, 0>
look_at <0, 0, 0>
}
light_source {<0, 0, -20> color White}
light_source {<0, 40, -1> color White}
// Ok, this could be done with a lot more mathematical
// elegance, but this is the way I worked it out...
#declare Pent = // pentagon, with diagonals
union {
sphere {
< 0, 0.85065080834958, 0 >,
0.031
pigment { Blue }
}
cylinder {
< 0, 0.85065080834958, 0 >,
< 0.809016994373713, 0.262865556055407, 0 >,
0.023
pigment { Blue }
}
cylinder {
< 0, 0.85065080834958, 0 >,
< 0.5, -0.688190960232546, 0 >,
0.031
pigment { Red }
}
sphere {
<0.809016994373713, 0.262865556055407, 0 >, 0.031
pigment { Blue }
}
cylinder {
< 0.809016994373713, 0.262865556055407, 0 >,
< 0.5, -0.688190960232546, 0 >,
0.023
pigment { Blue }
}
cylinder {
< 0.809016994373713, 0.262865556055407, 0 >,
< -0.5, -0.688190960232546, 0 >,
0.023
pigment { Green }
}
sphere {
< 0.5, -0.688190960232546, 0 >, 0.031
pigment { Blue }
}
cylinder {
< 0.5, -0.688190960232546, 0 >,
< -0.5, -0.688190960232546, 0 >,
0.023
pigment { Blue }
}
cylinder { < 0.5, -0.688190960232546, 0 >,
< -0.809016994373713, 0.262865556055407, 0 >,
0.023
pigment { Green }
}
sphere {
< -0.5, -0.688190960232546, 0 >, 0.031
pigment { Blue }
}
cylinder {
< -0.5, -0.688190960232546, 0 >,
< -0.809016994373713, 0.262865556055407, 0 >,
0.023
pigment { Blue }
}
cylinder {
< -0.5, -0.688190960232546, 0 >,
< 0, 0.85065080834958, 0 >,
0.023
pigment { Green }
}
sphere {
< -0.809016994373713, 0.262865556055407, 0 >, 0.031
pigment { Blue }
}
cylinder {
< -0.809016994373713, 0.262865556055407, 0 >,
< 0, 0.85065080834958, 0 >,
0.023
pigment { Blue }
}
cylinder {
< -0.809016994373713, 0.262865556055407, 0 >,
< 0.809016994373713, 0.262865556055407, 0 >,
0.023
pigment { Green }
}
}
#declare Bottom = union {
object { Pent
rotate < 0, 0, 72 >
scale < 8, 8, 8 >
}
object { Pent
scale < 8, 8, 8 >
rotate < 0, 0, 1 * 72 >
translate < 0, 8 * 0.688190960232546, 0 >
rotate < 90 + 26.56505117708, 0, 0 >
translate < 0, -8 * 0.688190960232546, 0 >
}
object { Pent
scale < 8, 8, 8 >
rotate < 0, 0, 3 * 72 >
translate < 0, 8 * 0.688190960232546, 0 >
rotate < 90 + 26.56505117708, 0, 0 >
translate < 0, -8 * 0.688190960232546, 0 >
rotate < 0 , 0 , 72 >
}
object { Pent
scale < 8, 8, 8 >
rotate < 0, 0, 2 * 72 >
translate < 0, 8 * 0.688190960232546, 0 >
rotate < 90 + 26.56505117708, 0, 0 >
translate < 0, -8 * 0.688190960232546, 0 >
rotate < 0 , 0 , 2 * 72 >
}
object { Pent
scale < 8, 8, 8 >
translate < 0, 8 * 0.688190960232546, 0 >
rotate < 90 + 26.56505117708, 0, 0 >
translate < 0, -8 * 0.688190960232546, 0 >
rotate < 0 , 0 , 3 * 72 >
}
object { Pent
scale < 8, 8, 8 >
rotate < 0, 0, 9 * 72 >
translate < 0, 8 * 0.688190960232546, 0 >
rotate < 90 + 26.56505117708, 0, 0 >
translate < 0, -8 * 0.688190960232546, 0 >
rotate < 0 , 0 , 4 * 72 >
}
}
// now draw the thing!
object { Bottom
rotate < 180, 0, 0 >
translate <0,0,8*(0.850650808350178 + 1.37638192047016)>
}
object {
Bottom
}
For the full
group-theoretic explanation of this (and much, much more :-) see:
http://www.maths.uwa.edu.au/Staff/schultz/3P5.2000/3P5.8Icosahedral.html
Addition, 24 Mar, 2001:
As I should probably have guessed, this fact
is already documented here. See
how to construct a dodecahedron (includes pictures!)